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ABSTRACT
Using a wavelet decomposition technique, we have extracted the Hurst exponent for a sample
of 46 long and 22 short gamma-ray bursts (GRBs) detected by the Gamma-ray Burst Monitor
aboard the Fermi satellite. This exponent is a scaling parameter that provides a measure
of long-range behaviour in a time series. The mean Hurst exponent for the short GRBs is
significantly smaller than that for the long GRBs. The separation may serve as an unbiased
criterion for distinguishing short and long GRBs.
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1 IN T RO D U C T I O N

Our present understanding of complex astrophysical objects such as
cataclysmic variables (CVs), active galactic nuclei and gamma-ray
bursts (GRBs) comes nearly entirely from the temporal and spectral
analyses of their photoemissions (with some additional information
coming from possible associations, such as host galaxies). In this
paper, we consider the temporal aspects of GRB light curves ob-
served by the Gamma-Ray Burst Monitor (GBM) aboard the Fermi
satellite. Many studies of the temporal properties of GRB light
curves have been published, such as Nemiroff (2000, 2012), Norris
et al. (2005), Hakkila & Nemiroff (2009) and Hakkila & Preece
(2011), from the perspective that light curves are comprised of a
series of displaced pulses and that by fitting the individual pulses
and associating pulses at various photon energies one can arrive at
a holistic understanding of light curves which in turn may be used
to constrain the physics of the engines that produce them. The main
appeal of this approach is the intuitive connection between pulses
and collisions in the internal shock model. While this is a per-
fectly reasonable method, issues do arise concerning the functional
form to use for pulse fitting and how to discern actual pulses from
stochastic fluctuations in the light curves. The situation is further
exacerbated by the fact that GRB light curves exhibit consider-
able variation in duration and in pulse profile. We note the signifi-
cant progress made in non-parametric analyses using the Bayesian
block technique (Scargle et al. 2012). In this type of analysis, the
duration of a light curve is represented as a tessellated block of
time which can be partitioned into a complete array of sub-blocks
in any number of ways. An optimal partition (a partition of sub-
blocks maximizing a fitness function) is shown to exist, be unique
and computable iteratively. The optimal partition of sub-blocks is
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determined, given a prior probability distribution for the number of
blocks, by finding the model best representing the data as sets of
piecewise constant segments or sub-blocks. This technique shows
great promise in resolving statistically significant temporal features
from noise and detector related artefacts.

An ideal complementary approach to probing light curves would
be one which handles seemingly disparate profiles on an equal
footing and distils their complex forms into a single parameter
which may be used to compare one light curve with another. One
such method was pioneered by Harold Edwin Hurst (Hurst 1951)
with a technique he invented called the rescaled range analysis (R/S)
which was later improved upon by Benoit Mandelbrot (Mandelbrot
& van Ness 1968). The eponymous parameter resulting from the
R/S is called the Hurst exponent, H, and is closely related to the
fractal dimension, D, the understanding of which Mandelbrot spent
much of his career developing. In fact, fractional Brownian motion
(fBm), which Mandelbrot defined in 1968, is parametrized solely
by H and serves as a useful model for discussing time series. After
determining H for a given time series, one is in a position to make
several statements about the nature of that time series including
whether the sequence appears random or whether it is persistent or
antipersistent, and if so, whether it exhibits long-range dependence,
and over what time-scales these characteristics are operative. All
of these are informative quantitative statements, especially if the
specific process generating the time series is partially or completely
unknown, in which case, these statements are perhaps all one can
really say about the process given the available information. Some
fields of research in which interesting work is being done with
Hurst exponents are financial markets, seismology, anaesthesiology,
astrophysics, plasma physics and genomics.

We point out that neither the pulse-fitting methods nor the
Bayesian block analysis (Scargle et al. 2012) yields information
directly relatable to the Hurst exponent as does the wavelet anal-
ysis. One approach to access the Hurst exponent from a Bayesian
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block framework that seems reasonable would be an adaptation of
the box-counting algorithm (Feder 1988). Such a Bayesian box-
counting algorithm is outside the scope of this paper.

The estimation of the Hurst exponent and the related scaling
exponent, α, has a history in astrophysics (Fritz & Bruch 1998;
Walker & Schaefer 2000; Tamburini, De Martino & Bianchini 2009;
Anzolin et al. 2010) for both CVs and GRBs. We propose that a
similar determination of H for GRB light curves will be a valuable
tool for categorization and we present a separation of long and short
GRBs based on H.

2 M E T H O D O L O G Y

2.1 Hurst exponent and self-affinity

Pioneering work in self-similarity and long-range dependence was
first published in 1951 by Hurst in the study of annual Nile River
levels, (Hurst 1951). Hurst examined several decades of data to
determine what should be the minimum size of a reservoir so that it
neither overflows nor runs dry due to yearly fluctuations and made
the unexpected observation that annual Nile River levels were not
independent from one another but instead exhibited a memory of
past events.

In this analysis of time series data, we search for statistical frac-
tals, i.e. fractals whose statistical characteristics are independent of
time-scale. Such fractal time series are called self-similar. There is
another class of statistical fractals whose scale invariance is broken
but can be restored by a multiplicative factor. These statistical frac-
tals are called self-affine. Mandelbrot & van Ness (1968) defined a
time series, X(t) with t ∈ {t0, . . . , tN − 1}, to be self-affine if, after a
rescaling t → λt, the following relation is satisfied,

X(t)
.= λ−H X(λt). (1)

The exponent, H, is the Hurst exponent (Hurst 1951) and the symbol
.= denotes equality in distribution. The canonical example of a self-

affine time series, also given by Mandelbrot & van Ness (1968), is
fBm. Stationary in the context of this paper is second-order station-
arity which means the first and second moments obey the following
relations:

E{X(t)} = μX

E{X(t2)X(t1)} = γ (t2 − t1) = γ (τ ), (2)

where μX is the sample mean, γ is the autocovariance sequence
and τ ≡ t2 − t1 is the lag. The Hurst exponent, H, parametrizes the
degree of statistical self-similarity which a time series exhibits. A
self-similar series may be sub-divided into three categories: A series
with 1/2 < H < 1 is referred to as persistent or long-range dependent
while a series with 0 < H < 1/2 is referred to as antipersistent, Feder
(1988). For H = 1/2, we have neither persistence nor antipersistence
and this corresponds to the case of random and uncorrelated events.
The Hurst exponent provides a model-independent characterization
of the data. Three examples of times series with different values
of H are shown in Fig. 1. A graphical depiction of the rescaling
described by equation (1) for a time series with H = 0.25 is given
in Fig. 2 and for a time series with H = 0.75 in Fig. 3.

2.2 Wavelet transforms

Wavelet transformations have been shown to be a natural tool for
multiresolution analysis of non-stationary time series (Mallat 1989;
Flandrin 1992). Wavelet analysis is similar to Fourier analysis in

Figure 1. Simulated fBms with different values of H: (a) H = 0.25, (b)
H = 0.50, (c) H = 0.75.

Figure 2. Graph of BH(t) with H = 0.25. A box is placed around a sub-
range of t (lower-left corner). The box is zoomed into with time axis scaled
by a and amplitude scaled by a−H. This is a self-affine transformation that
not only makes the rescaled version qualitatively ‘similar’ to the original
but also preserves the variance as computed in equation (9).

Figure 3. Graph of BH(t) with H = 0.75. A box is placed around a sub-
range of t (lower-left corner). The box is zoomed into with time axis scaled
by a and amplitude scaled by a−H. This is a self-affine transformation that
not only makes the rescaled version qualitatively ‘similar’ to the original
but also preserves the variance as computed in equation (9).
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many respects but differs in that a wavelet basis function, ψ(t), is
well localized while Fourier basis functions are global. Localization
means that outside some range the amplitudes of wavelet basis
functions go to zero or are otherwise negligibly small, Percival
(2000). On the other hand, the wavelet transform is similar to the
Fourier transform because they both are expansions into a complete
orthogonal basis and resolve low-frequency, large-scale structure
from high-frequency, small-scale structure.

Wavelet analysis is said to be multiresolution because the time
series under investigation is interrogated at multiple scales by a
basis set of wavelets which are rescaled and translated versions of
an original wavelet commonly referred to as the mother wavelet,
ψ(t),

ψ(t) → ψa,b(t) = 1√
a

ψ

(
t − b

a

)
, (3)

where a represents an octave or time-scale and the parameter b gives
the position of the wavelet within the octave.

The continuous wavelet transform (CWT) coefficient, Ca,b, of a
time series for some scale and position is computed as

Ca,b = 1√
a

∫
X(t)ψa,b(t) dt . (4)

2.2.1 Wavelet analysis

The wavelet-transform technique for estimating self-affinity is out-
lined here. By substituting the distribution relation in equation (1)
into equation (4), we find

Ca,b = 1√
a

∫
X(t)ψa,b(t) dt

= λ−(H+1/2)

√
λa

∫
X(λt)ψa,b

(
λt − λb

λa

)
d(λt)

= λ−(H+1/2)Cλa,λb. (5)

It is straightforward to see from equation (5) that a self-affine time
series will have wavelet coefficients whose variance over a particular
scale, λa, is related to the scale parameter λ by

log var(Cλa,λb) = (2H + 1) log λ + constant. (6)

2.2.2 Fast wavelet transform

Similar to the CWT, the discrete fast wavelet transform (FWT)
is also a multiresolution operation owing to the construction of
the wavelets, ψ j, k, which form the basis of the discrete FWT. We
employed the discrete wavelet transform because of its high degree
of computational efficiency. In order to distinguish between the
CWT and its FWT counterpart, we make a slight change of notation.
Just as before, the ψ j, k, are rescaled, translated versions of the
mother wavelet, ψ ,

ψj,k = 2−j/2ψ(2−j t − k). (7)

The coefficients of the FWT are written as

dj,k = 〈X,ψj,k〉,
where j and k play the roles of a and b, respectively. Moreover, the
values which j and k assume obey the dyadic partitioning scheme

(Mallat 1989; Percival 2000; Addison 2002). That is, for a time
series whose number of elements is given by N = 2m,

0 ≤ j ≤ m − 1

and

0 ≤ k ≤ 2j − 1.

Applying the dyadic partitioning scheme removes any redundant
encoding of information by the wavelet-transform coefficients and
guarantees orthogonality among the wavelet basis for any change
in j or k,

〈ψj,k, ψj ′,k′ 〉 = δj,j ′δk,k′ . (8)

2.3 Log-scale diagrams

The average power of the light curve at time-scale j is expressed
as β j and may be written in terms of the variance of the FWT
coefficients as

βj = var(dj,k) = 1

nj

nj −1∑
k=0

|dj,k|2, (9)

where nj is the number of coefficients at scale j (Abry et al. 2000,
2003). Similarly to equation (6), it has been shown by Flandrin
(1992) that for a series with non-stationary statistics the power-law
variance of wavelet coefficients goes like

log2(βj ) = (2H + 1)j + constant, (10)

where H is the Hurst exponent. Masry (1993) later extended this
result to a larger class of non-stationary problems with stationary
increments in the low-frequency limit and showed that fBms are
a special case. A plot of equation (10) is referred to as a log-
scale diagram. Log-scale diagrams are useful for identifying scaling
regions, i.e. the range of octaves over which self-affine scaling
occurs. The slope, α, of the scaling region is related to the Hurst
exponent through α = 2H + 1.

In practice, a piecewise fitting function, f (j; pi) is defined as

f (j ; pi) =
{

p1; 1 ≤ j ≤ p0

p2 + p3j ; p0 ≤ j
,

where p0 is the value of j at which the piecewise fitting function
changes definition.

2.4 Choice of wavelet basis

As in any orthogonal transformation, the basis functions to use
in a wavelet transform is a matter of strategic choice. One typi-
cally chooses a basis that emphasizes some characteristic of in-
terest. Commonly used families of wavelet bases are the Coiflet,
Daubechies and Haar (Addison 2002). We chose the Haar wavelet
basis which is the simplest of the Daubechies family.

The Haar wavelet basis was chosen from among all other possi-
ble bases because it has the fewest number of vanishing moments
and most compact support (Addison 2002), has a straightforward
interpretation, i.e. is equivalent to the Allan variance (Xizheng &
Zhensen 1997), and is constant over its interval of support similar
to the model assumed in the Bayesian block method (Scargle 1998;
Scargle et al. 2012).

The Haar basis is not without some defects, as noted by Kaplan
& Jay Kuo (1993) and Flandrin (1992). Namely the Haar wavelet
transformation is known to underestimate the actual Hurst exponent
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and this phenomenon is a function of the coarseness of the binning,
the number of counts in the light curve and also of H itself. We
show in Section 2.6 that this effect is present but smaller than ≈1σ

for a set of simulated light curves and is likely to be smaller for
actual data. However, we consider that the advantages of the Haar
basis outweigh its disadvantages.

2.5 Minimizing uncertainties

2.5.1 Circular permutation

Spurious artefacts due to incidental symmetries resulting from acci-
dental misalignment (Coifman 1995; Percival 2000) of light curves
with wavelet basis functions are minimized by circularly shifting
the light curve against the basis functions. Circular shifting is a
form of translation invariant de-noising (Coifman 1995). It is pos-
sible that a shift will introduce additional artefacts by moving a
different symmetry into a susceptible location. The best approach
is to circulate the signal through all possible values, or at least a
representative sampling, and then take an average over the cases
which minimizes the effect of spurious correlations.

2.5.2 Reverse-tail concatenation

Both discrete Fourier and discrete wavelet transformations imply
that the expansion is periodic, with the longest period equal to the
full time range of the input data. This can be interpreted to mean
that for a series of N elements, {X0, X1, . . . , XN − 1}, X0 is made a
surrogate for XN and X1 is made a surrogate for XN + 1, and so forth.
This assumption may lead to trouble if X0 is much different from
XN − 1. In this case, artificially large variances may be computed.
Reverse-tail concatenation minimizes this problem by making a
copy of the series which is then reversed and concatenated on to
the end of the original series resulting in a new series with a length
twice that of the original. Instead of matching boundary conditions
like,

X0, X1, . . . , XN−1, X0, (11)

we match boundaries as,

X0, X1, . . . , XN−1, XN−1, . . . , X1, X0. (12)

Note that the series length has thus artificially been increased to 2N
by reversing and doubling of the original series. Consequently, the
wavelet variances at the largest scale in a log-scale diagram reflect
this redundancy. This is the reason that the wavelet variances at
the largest scale are excluded from least-squares fits of the scaling
region.

2.5.3 Poisson operator

Photon counting statistics are considered in a bootstrapping proce-
dure by applying a Poisson operator, P(λi, Xi), to every light curve
prior to analysing. Each light curve is binned initially at 200 µs
and the number of counts per bin, Xi, is used as a mean value, λi,
to be supplied to a Poisson random number generator. The value
returned from P(λi, Xi) is used to replace the number of counts
stored in Xi. The Poisson operator is applied to the signal Xi prior to
every circular permutation. We show in Section 2.6 that the Poisson
operator does not affect the measured slope of log-scale diagrams
above the Poisson level.

2.6 A test case: fBm

Spatial-temporal fBms are a useful model for studying self-
similarity and long-range dependence in non-stationary time series
(Mandelbrot & van Ness 1968) and are characterized by a single
parameter, H, the Hurst exponent. An fBm with a particular H is
expressed as BH(t) and has the property of self-similarity over a
range of scales after a rescaling of axes,

BH (t)
.= a−H BH (at), (13)

where
.= denotes distributional equality as in Section 2.1. The effi-

cacy of the H estimation procedure was tested using simulated data
in the form of fBm time series. Two tests were performed; in the
first test, we examine the ability of our algorithm to determine H
from fBms in the presence of Poisson noise and in the second test
we examine how well we can determine H at H = 0.25, 0.50 and
0.75 from noise-free fBms.

2.6.1 Test 1

The numerical computing environment MATLAB was used to pro-
duce 1000 realizations of fBms with scaling parameter H randomly
chosen from the range 0.0 < α < 1.0 by using a uniform ran-
dom number generator. Copies of the fBms were combined with a
Poisson operator as described in Section 2.5.3. The fBms and the
Poissonian fBms thus produced are shown in black and red, respec-
tively, in panel (a) of Fig. 4. Panel (b) shows the Poisson noise that
has been added by P . The log-scale diagrams in panel (c) illustrate
the effect of Poisson statistics on the Hurst exponent. The bare fBm
is shown in black, the dressed Poisson-type fBm is in red and the
residual Poisson noise in shown in blue. The log-scale diagram for
the bare fBm in panel (c) exhibits a clean slope across all octaves.
We see the effect of a Poisson noise operator; it adds to the signal
variance constant across all octaves. Below some octave the signal
is completely dominated by noise but above that octave the slope of
the log-scale diagrams is independent of P . See, for example, the
black and red symbols for j ≥ 6.

2.6.2 Test 2

In the second test, 3000 simulated Poisson-type light curves were
generated. The simulated data were divided into three sub-groups
of 1000 according to H. The three sub-groups were H = {0.25,
0.50, 0.75}. The simulated data in each group were analysed and
an attempt was made to recover the value of the Hurst exponent, H,
used to generate the fBm. The Hurst exponent was estimated by a
least-squares fit to the scaling portion of the log-scale diagrams to
determine α and then H is found from equation (10).

Results of the second test can be seen in Fig. 5 and Table 1. The
results show that the FWT analysis with the Haar wavelet basis
does underestimate the value of H as discussed in Section 2.4 but
the magnitude of the error is not significant for our purpose.

3 DATA R E D U C T I O N

The GBM on board Fermi observes GRBs in the energy range
8 keV–40 MeV. The GBM is composed of 12 thallium-activated
sodium iodide (NaI) scintillation detectors (12.7 cm in diameter by
1.27 cm thick) that are sensitive to energies in the range of 8 keV–
1 MeV and two bismuth germanate scintillation detectors (12.7 cm
diameter by 12.7 cm thick) with energy coverage between 200 keV
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Figure 4. Panel (a) shows a sample fBm pre-processed and ready to be analysed in black and the same light curve after applying the Poisson operator, P ,
in red. Panel (b) shows the Poisson noise that has been added by P . In panel (c), log-scale diagrams illustrate the effect of Poisson statistics on the Hurst
exponent. The bare fBm is shown in black, the dressed Poisson-type fBm is in red and the residual Poisson noise in shown in blue.

Figure 5. Histograms of 3000 simulated fBm traces. Three categories of
fBms were generated with known Hurst exponents, H = 0.25, 0.50 and
0.75. These fBms were then analysed to recover the Hurst exponent. The
histograms are the results of this analysis. Pairs of vertical lines are drawn
for each peak. The shorter of the two indicates the known H used to generate
the fBms and the longer of the two indicates the H extracted by our analysis.
Results are tabulated in Table 1.

Table 1. Summary of results
in Fig. 5.

H Hmeas

0.25 0.23 ± 0.02
0.50 0.49 ± 0.02
0.75 0.74 ± 0.03

and 40 MeV. The GBM detectors are arranged in such a way that
they provide a significant view of the sky (Meegan et al. 2009).

In this work, we have extracted light curves for the GBM NaI
detectors over the entire energy range (8 keV–1 MeV, also including
the overflow beyond 1 MeV). Typically, the brightest three NaI
detectors were chosen for the extraction. Light curves for both long
and short GRBs were extracted at a time binning of 200 µs. The
long GRBs were extracted over a duration starting from 20 s before
the trigger and up to about 50 s after the T90 (taken from the Fermi
GBM-Burst Catalog; Paciesas et al. 2012) for the burst without any
background subtraction. For short GRBs, durations were chosen to
be 20 s before the trigger and 10 s after the T90. The T90 durations
were obtained from the Fermi GBM-Burst Catalog (Paciesas et al.
2012). Summaries for the 46 long and 22 short GRBs used in this
study are tabulated in Tables 2 and 3.

4 R ESULTS AND DI SCUSSI ON

We have used a technique based on wavelets to determine the Hurst
exponents for a sample of GRB prompt-emission light curves. As
noted in Section 2.1, the Hurst exponent provides a measure of cor-
related behaviour in a time series. The extreme values of H vary from
0 to 1, and a value of 0.5 implies uncorrelated (random) behaviour.
As the fBm model indicates, large H-values tend to be associated
with relatively smooth functions and small H-values tend to favour
highly jagged curves. This feature suggests that H may be useful
in quantifying the variability observed in GRB prompt-emission
light curves. Plotted in Fig. 6 are the extracted H-exponents as his-
tograms for both long and short GRBs. The histograms clearly show
a displacement in H for the distributions of long and short GRBs,
with the short GRBs indicating a preference for small values of H
(see Table 4). The mean displacement in H raises the interesting
possibility of using this feature as a way of distinguishing between
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Table 2. Summary of long GRBs.

GRB Number H δH T90 (s) δT90 (s)

080723557 0.316 0.023 58.369 1.985
080723985 0.425 0.053 42.817 0.659
080724401 0.451 0.060 379.397 2.202
080804972 0.549 0.085 24.704 1.460
080806896 0.591 0.056 75.777 4.185
080807993 0.105 0.014 19.072 0.181
080810549 0.211 0.037 107.457 15.413
080816503 0.258 0.035 64.769 1.810
080817161 0.393 0.048 60.289 0.466
080825593 0.382 0.036 20.992 0.231
080906212 0.716 0.070 2.875 0.767
080916009 0.414 0.053 62.977 0.810
080925775 0.453 0.056 31.744 3.167
081009140 0.732 0.073 41.345 0.264
081101532 0.255 0.040 8.256 0.889
081125496 0.629 0.080 9.280 0.607
081129161 0.261 0.036 62.657 7.318
081215784 0.629 0.070 5.568 0.143
081221681 0.567 0.089 29.697 0.410
081222204 0.502 0.065 18.880 2.318
081224887 0.692 0.071 16.448 1.159
090102122 0.126 0.013 26.624 0.810
090131090 0.575 0.062 35.073 1.056
090202347 0.241 0.039 12.608 0.345
090323002 0.294 0.025 135.170 1.448
090328401 0.289 0.034 61.697 1.810
090411991 0.057 0.017 14.336 1.086
090424592 0.442 0.029 14.144 0.264
090425377 0.360 0.047 75.393 2.450
090516137 0.206 0.026 118.018 4.028
090516353 0.214 0.104 123.074 2.896
090528516 0.259 0.026 79.041 1.088
090618353 0.524 0.053 112.386 1.086
090620400 0.508 0.052 13.568 0.724
090626189 0.352 0.025 48.897 2.828
090718762 0.482 0.055 23.744 0.802
090809978 0.732 0.124 11.008 0.320
090810659 0.558 0.104 123.458 1.747
090829672 0.300 0.029 67.585 2.896
090831317 0.102 0.013 39.424 0.572
090902462 0.188 0.014 19.328 0.286
090926181 0.369 0.032 13.760 0.286
091003191 0.316 0.033 20.224 0.362
091127976 0.611 0.060 8.701 0.571
091208410 0.409 0.031 12.480 5.018
100414097 0.183 0.020 26.497 2.073

short and long GRBs. This would be in addition to the currently
employed criteria based on T90 and spectral hardness ratios. Inter-
estingly, the histograms also show a significant overlap in the region
of small H-exponents possibly signalling similarities between the
two types of bursts in this range.

It could be argued that the sizeable overlap of the distributions is
essentially a consequence of the large dispersion (in H) exhibited
by both short and long GRB distributions. While it is not known
precisely what processes lead to this large dispersion in H, we note
that the dispersion for the short GRBs is somewhat smaller than the
corresponding one for long GRBs. If the dispersion is associated
with the energetics of the progenitors of the respective systems,
i.e. a merger of compact objects in the case of short GRBs and
the collapse of a rapidly rotating massive star for long GRBs, then
one might indeed expect a larger dispersion in the H-distribution

Table 3. Summary of short GRBs.

GRB Number H δH T90 (s) δT90 (s)

080723913 0.026 0.008 0.192 0.345
081012045 −0.022 −0.002 1.216 1.748
081102365 0.075 0.011 1.728 0.231
081105614 0.135 0.026 1.280 1.368
081107321 0.331 0.059 1.664 0.234
081216531 0.366 0.046 0.768 0.429
090108020 0.482 0.048 0.704 0.143
090206620 0.358 0.042 0.320 0.143
090227772 0.409 0.038 1.280 1.026
090228204 0.381 0.027 0.448 0.143
090308734 0.030 0.004 1.664 0.286
090429753 0.321 0.045 0.640 0.466
090510016 0.192 0.017 0.960 0.138
090621922 0.255 0.053 0.384 1.032
090907808 0.265 0.034 0.832 0.320
091012783 0.120 0.014 0.704 2.499
100117879 0.479 0.046 0.256 0.834
100204858 0.518 0.070 1.920 2.375
100328141 0.034 0.005 0.384 0.143
100612545 0.171 0.021 0.576 0.181
100625773 0.232 0.041 0.192 0.143
100706693 −0.031 −0.009 0.128 0.143

Figure 6. Histogram of H extracted from long and short GRBs. The result
for long GRBs is plotted as the solid blue line while the short GRB result
is plotted with the dashed red line. Note the overlap but also that the means
are displaced from one another as shown in Table 4 for details of plot.

Table 4. Summary of results in
Fig. 6.

Type N STD 〈H〉

Long 46 0.18 0.40 ± 0.03
Short 22 0.17 0.23 ± 0.04

of long GRBs compared to the corresponding one for short GRBs
based purely on the difference in the mass range for the respective
progenitors. Moreover, additional factors such as the formation of
an accretion disc, the size of the disc, the mass of the disc, the
strength of the magnetic field and the magnitude of the accretion
rate during the prompt phase, remain largely uncertain. With the
added intrinsic variability of the central engine itself, we should not
be surprised to observe a systematic difference in the extracted Hurst
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Figure 7. A scatter plot of H against the minimum variability time-scale
from MacLachlan et al. (2012, 2013).

exponents for long and short bursts. For completeness, we mention
that while the dispersion in H is large for both distributions, the
extracted H-value for each individual GRB is known reasonably
precisely (see Table 1).

Another way to examine the H-distributions is to recast the
data against the so-called minimum-time-scale parameter, MTS,
extracted by MacLachlan et al. (2012, 2013). Using a method based
on wavelets, these authors explored the scaling characteristics of
GRBs and determined the minimum time-scale at which scaling
processes dominate over random noise processes. Furthermore, the
authors have recently shown a direct connection between the ex-
tracted MTS and the smallest pulse structures extracted by pulse-
fitting techniques. The same conclusions were confirmed indepen-
dently by Bhat (2013) using a similar technique to extract MTS by
computing rescaled Pearson variances. Furthermore, a link between
pulse properties and MTS connecting GRB prompt emission and
X-ray flaring has been identified by Sonbas et al. (2013).

In addition to this link with pulses, MTS provides an alternate
scale (to T90) by which long and short GRBs can be separated.
Shown in Fig. 7 are the extracted H-exponents for both long and
short GRBs versus the MTS (in the observer frame). Short GRBs
tend to cluster around small MTS values and follow a steep trajec-
tory in the H–MTS plane whereas the long GRBs are distributed
over a larger range in MTS and seem to follow a gradual power-
law-like trajectory. The behaviour is a little more clear in panel (b)
of Fig. 7 where the MTS is plotted on a log scale: Here, the short
and long GRBs indicate a small (∼30 per cent) positive correlation
respectively; the combined sample on the other hand shows a larger
positive correlation (∼50 per cent) and an obvious separation of the
two distributions with MTS.

Other astrophysical systems for which the Hurst exponent has
been extracted includes CVs. These systems, comprising tightly
bound binaries (with periods of the order of few hours) and a pri-
mary consisting of a compact object (typically a white dwarf) and an
accretion disc that can accommodate significant mass transfer from
the secondary, may provide a benchmark for gauging the systemat-
ics of the extracted Hurst exponents. Indeed, large dispersions in H
are found for both optical and X-ray light curves of CVs. Interest-
ingly though, CVs apparently tend to favour large H-exponents, i.e.
greater than 0.5. This implies that the CV distributions are persis-
tent as opposed to a tendency towards antipersistence for GRBs. By
their very nature, CVs are systems that have built-in periodicity that
is readily reflected, in most cases, in the observed emissions from

these systems. GRBs, on the other hand, are transient phenomena
which show very little evidence for periodicities. It is possible that
this simple difference may lead, in part at least, to the degree of
persistence or antipersistence exhibited by these systems. Further-
more, some authors, (Fritz & Bruch 1998; Tamburini et al. 2009;
Anzolin et al. 2010), have noted that the extracted H-values indi-
cate a sensitivity to the strength of the magnetic field of the systems
under study, and in particular, the optical and X-ray emissions from
CVs exhibit different H-distributions. Since the optical and X-ray
emissions in CVs arise from spatially separated regions (the optical
from an extended disc and the X-ray in the boundary layer between
the inner regions of the disc and the surface of the compact object
or the polar regions in the case of a highly magnetic system), it is
tempting to surmise that such a comparison might be fruitful in elu-
cidating the spatial characteristics of GRB jets: Examples include
the radii and/or regions that are commonly associated with the emis-
sion sites for prompt gamma-rays (e.g. the photospheric radius in
the case of a thermal component) and the steeply declining phase of
the X-ray light curves (linked with high-latitude emission resulting
from internal shell collisions). While it is understood that GRBs
and CVs are very different systems and therefore the translation
of the Hurst exponent from one system to the other is likely to be
speculative at best, it is intriguing nonetheless that a simple scaling
parameter may enable us to connect common underlying proper-
ties and processes that ultimately produce the observed emission in
these diverse systems.

5 C O N C L U S I O N S

We have studied the temporal properties of a sample of prompt-
emission light curves for short- and long-duration GRBs detected
by the Fermi/GBM mission. By using a technique based on wavelets,
we have extracted the Hurst exponents for these bursts. This expo-
nent measures the relation between variability over the full range
of available time-scales, comparing long-range with short-range
variability. The physical limits of this index are 0 and 1, where the
mid-point (H = 0.5), is an indicator of completely uncorrelated (ran-
dom) processes that contribute to the observed time series. Often,
the H is also associated with the fractal dimension (D) of structures
by

D = 2 − H, (14)

and can be thought of as a measure of the degree of jaggedness of
the structures under study. In this sense, the H may also be indirectly
linked to the variability seen in the prompt-emission of many GRBs.
Our main results are summarized as follows.

(a) The means of the H-distributions for the GRBs in our sample
show an offset between short and long GRBs, with the short GRBs
indicating a preference for smaller Hurst exponents compared to
the long GRBs. This offset is potentially an independent criterion
for distinguishing between long- and short-duration bursts.

(b) Compared to short GRBs, long-duration bursts exhibit a
larger dispersion in H. The origin of this dispersion is not known,
although it is possible that it is related to the underlying energetics
of the different progenitors that produce long- and short-duration
bursts.

(c) No distinct group or clustering is found for H-values cor-
responding to 0.5. This implies that random (or uncorrelated) pro-
cesses, if present, play a lesser role in the production of the observed
prompt emission. Moreover, the means of the H-distributions for
both long and short GRBs indicate a skewness towards values less
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than 0.5. Overall, this implies that the prompt-emission time series
exhibit antipersistence.

Finally, we note that because of the large dispersion in H, there
exists a significant region over which the long and short bursts
overlap. This overlap region raises the interesting possibility of
exploring bursts that may possess many more common features
than would otherwise be suspected. The case for an intermediate
class of GRBs (Horvath 1998; Gao, Lu & Zhang 2010) remains
unsettled and warrants further investigation.
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